FIRST TERM EXAMINATION

APRIL/MAY 2018

CLASS XII

Marking Scheme - SUBJECT[CHEMISTRY][THEORY]

Q.NO.	Answers	Marks
		(with
		split
		up)
1.	$4AgNO_3 + H_3PO_2 + 2H_2O \rightarrow 4Ag + HNO_3 + H_3PO_4$	1
2.	4	1
3.	Catalytic hydrogenation of CO in presence of ZnO&Cr ₂ O ₃ at high temp	1
	&pressure	
4.	CH ₃ I bcs I is a good leaving group.	1
5.	H-bonding between O atom of ethoxy ethane and H atoms of water	1
6.	The brown ring test for nitrates depends on the ability of Fe2+ to reduce nitrates	1
	to nitric oxide, which reacts with Fe2+ to form a brown coloured complex	
	Explanation with equations	1
	OR	
	The optimum conditions for the production of ammonia are a pressure of about	
	200 atm, a temperature of ~ 700 K and the use of a catalyst such as iron oxide	1+1
	with small amounts of K ₂ O and Al ₂ O ₃	
	Balanced chemical equation	
7.	a) PH ₃	2
	b) NH ₃	
	c) SbH ₃	
	d) NH ₃	
8.	a) 2-Methyl-1-Phenyl-hex-4-en-2-ol	2

	b) 1-chloro-4-isobutylbenzene	
9.	a) Aq KOH+HNO ₃ +AgNO ₃ -benzyl chloride gives white ppt	2
	b) Phenol gives violet colour with neutral FeCl ₃	
10.	Correct structural formulae	2
11.	a) Phenol&iodoethane are formed	2
	b) 2-methyl propene is formed	
12.	Test for distinguishing alcohols, Equation	1
	explanation	1
		1
13.	Ostwalds Process	1/2
	conditions	1/2
	Balanced Equations	
	OR	
	Any 3 points of differences (1x3)	
14.	Balanced chemical equations	3x1
	a) $H_3PO_3 + 3HCl$	
	b) $P_4+8SOCl_2 \rightarrow 4PCl_3 +4SO_2 +2S_2Cl_2$	
	c) $Cu + HNO_3(conc.) \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$	
15.	Correct structures	3X1
16.	a) Steric repulsion between bulky alkyl gps	3x1
	b) Resonance effect/sp2 hybridised Carbon /O-H bond is more polar	JAI
	c) Intramolecular Hydrogen bonding in o-nitrophenol&inter molecular hydrogen	
	bonding in p-nitrophenol	
17.	Hydration of ethene to ethanol	3x1
	(i) $CH_2=CH_2^+H^+ \rightarrow CH_3CH_2^+$	JAI
	(ii) $CH_3CH_2^+ + H_2O \rightarrow CH_3CH_2OH_2^+$	
	(iii) $CH_3CH_2OH_2^+ \rightarrow CH_3CH_2OH + H^+$	
18.	A is C ₂ H ₅ OH, B is C ₂ H ₅ Cl	1/2+1/2
	Chemical equations	
19.	Hydroboration –oxidationAlcohols	1+1
19.		1+1+1
	Reimer-Tiemann reaction-Salicylaldehyde	

	Wiilliamsons synthesis-Ethers	
	Chemical equations	
20.	a) CH ₃ -*CHCl-CH ₂ -CH ₃	1
	b) The given reaction is an SN ² reaction.	2
	CH3CH2CH2 CN Incoming nucleophile (Reactant) In-butyl bromide (Reactant, alkyl hallde) CH2CH2CH3 CN CN CH2CH2CH3 FT CN CN CN CN CN CN CN CN CN C	
21.	a) Cl ₂ +FeCl ₃ followed by acylation	3x1
	b) Alc KOH followed by Markovnikovs addition of HBr.	
	c) Diazotization followed by KI	
22.	Correct definitions	3x1
23.	a) Nitroethane is formed	3x1
	b) 2,4,6-trinitrophenol	
	c) 3-bromocyclohexene is formed	
24.	a) Chloroform is slowly oxidised by air in the presence of light to carbonyl	3x1
	chloride, also known as phosgene	
	b) Partial double bond character of C-O bond due to resonance.	
	c) Less energy is released when new attractions are set up between the	
	haloalkane and the water molecules as these are not as strong as the original	
	hydrogen bonds in water	
25.	a) $CH_{3} - CH_{3} \xrightarrow{CH} \frac{CH}{573K} CH_{3} - C = CH_{2}$ i.	5x1

$$\begin{array}{c|c} & & & \text{OCH}_3 \\ & & & \text{Br}_2 \text{ in} \\ & & & \text{Ethanoic acid} \end{array} \qquad \begin{array}{c} & \text{OCH}_3 \\ & & \text{Br} \end{array}$$

b)

- i. o-Cresol, phenol, 3,5-dinitrophenol, 2,4,6-trinitrophenol
- ii. n-butane, Ethoxyethane, Pentanal, Pentan-1-ol

OR

a)

- i. Kolbe's reaction followed by acetylation.
- ii. PCC,&CH₃MgBr

iii. b)

i.

	T	1
	CH_3 - $CH = CH_2 + H_2O$	
26.	(A)Toluene,	½x5=2.5
	(B)-Benzyl chloride	
	(C)-Benzyl cyanide	
	(D)-2-phenylethanoicacid	
	(E) - 1,2-Diphenylethane	
	chemical reactions	½x3=1.5
		1
	OR	
	a)	
	i) Swarts reaction.	3x1
	ii) Finkelstein reaction.	
	iii) Friedel- crafts acylation of chlorobenzene	
		2x1
	b)	241
	i) Zaitsev rule,But-2-ene	
	ii) Antimarkovnikovs addn,1-bromobutane	
27.	a) $P4+3NaOH+3H_2O \rightarrow PH_3+3NaH_2PO_2$	1x5
	b) $PH_4I + KOH \rightarrow KI + H_2O + PH_3$	
	c) The solution of PH ₃ in water decomposes in presence of light giving red	
	phosphorus and H ₂ ,	
	$3\text{CuSO}_4 + 2\text{PH}_3 \rightarrow \text{Cu}_3\text{P}_2 + 3\text{H}_2\text{SO}_4$	
	d) $PH_3 + HBr \rightarrow PH_4 Br$	
	OR	
	a) Absence of d orbitals	1x5
	b) Presence of lone pair of electrons	
	c) PH ₄ ⁺ is tetrahedral and PH ₃ is pyramidal	
	d) Due to high BDE	
	e) Due to Inert pair effect	
		1
