FIRST TERM EXAMINATION

APRIL/MAY 2018

CLASS XII

Marking Scheme - SUBJECT[CHEMISTRY][THEORY]

Q.NO.	Answers	Marks (with split up)
1.	$4 \mathrm{AgNO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Ag}+\mathrm{HNO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4}$	1
2.	4	1
3.	Catalytic hydrogenation of CO in presence of $\mathrm{ZnO}_{2} \mathrm{Cr}_{2} \mathrm{O}_{3}$ at high temp \&pressure	1
4.	$\mathrm{CH}_{3} \mathrm{I}$ bcs I-is a good leaving group.	1
5.	H-bonding between O atom of ethoxy ethane and H atoms of water	1
6.	The brown ring test for nitrates depends on the ability of $\mathrm{Fe} 2+$ to reduce nitrates to nitric oxide, which reacts with $\mathrm{Fe} 2+$ to form a brown coloured complex Explanation with equations OR The optimum conditions for the production of ammonia are a pressure of about 200 atm , a temperature of $\sim 700 \mathrm{~K}$ and the use of a catalyst such as iron oxide with small amounts of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ Balanced chemical equation	1 1 $1+1$
7.	a) PH_{3} b) NH_{3} c) SbH_{3} d) NH_{3}	2
8.	a) 2-Methyl-1-Phenyl-hex-4-en-2-ol	2

	b) 1-chloro-4-isobutylbenzene	
9.	a) $\mathrm{Aq} \mathrm{KOH}+\mathrm{HNO}_{3}+\mathrm{AgNO}_{3}$-benzyl chloride gives white ppt b) Phenol gives violet colour with neutral FeCl_{3}	2
10.	Correct structural formulae	2
11.	a) Phenol\&iodoethane are formed b) 2-methyl propene is formed	2
12.	Test for distinguishing alcohols,Equation explanation	
13.	Ostwalds Process conditions Balanced Equations OR Any 3 points of differences (1x3)	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \end{array}$
14.	Balanced chemical equations a) $\mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}$ b) $\mathrm{P}_{4}+8 \mathrm{SOCl}_{2} \rightarrow 4 \mathrm{PCl}_{3}+4 \mathrm{SO}_{2}+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}$ c) $\mathrm{Cu}+\mathrm{HNO}_{3}($ conc. $) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	3x1
15.	Correct structures	3X1
16.	a) Steric repulsion between bulky alkyl gps b) Resonance effect/sp2 hybridised Carbon /O-H bond is more polar c) Intramolecular Hydrogen bonding in o-nitrophenol\&inter molecular hydrogen bonding in p-nitrophenol	3x1
17.	Hydration of ethene to ethanol (i) $\mathrm{CH}_{2}=\mathrm{CH}_{2}{ }^{+} \mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$ (ii) $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{+}$ (iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}^{+}$	3x1
18.	$\mathrm{A} \text { is } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \quad \mathrm{~B} \text { is } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ Chemical equations	$\left\lvert\, \begin{aligned} & 1 / 2+1 / 2 \\ & 1+1 \end{aligned}\right.$
19.	Hydroboration -oxidation.-Alcohols Reimer-Tiemann reaction-Salicylaldehyde	1+1+1

	Wiilliamsons synthesis-Ethers Chemical equations	
20.	a) $\mathrm{CH}_{3}-* \mathrm{CHCl}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ b) The given reaction is an SN^{2} reaction.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
21.	a) $\mathrm{Cl}_{2}+\mathrm{FeCl}_{3}$ followed by acylation b) Alc KOH followed by Markovnikovs addition of HBr . c) Diazotization followed by KI	3x1
22.	Correct definitions	3x1
23.	a) Nitroethane is formed b) 2,4,6-trinitrophenol c) 3-bromocyclohexene is formed	3x1
24.	a) Chloroform is slowly oxidised by air in the presence of light to carbonyl chloride, also known as phosgene b) Partial double bond character of C-O bond due to resonance. c) Less energy is released when new attractions are set up between the haloalkane and the water molecules as these are not as strong as the original hydrogen bonds in water	3x1
25.	a)	5x1

	ii. Anisole iii. b) i. o-Cresol, phenol, 3,5-dinitrophenol, 2,4,6-trinitrophenol ii. n-butane, Ethoxyethane, Pentanal, Pentan-1-ol OR a) i. Kolbe's reaction followed by acetylation. ii. $\mathrm{PCC}, \& \mathrm{CH}_{3} \mathrm{MgBr}$ iii. hydroperoxide b) i.

	ii. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$	
26.	(A)Toluene, (B)-Benzyl chloride (C)-Benzyl cyanide (D)-2-phenylethanoicacid (E) - 1,2-Diphenylethane chemical reactions OR a) i) Swarts reaction. ii) Finkelstein reaction. iii) Friedel- crafts acylation of chlorobenzene b) i) Zaitsev rule,But-2-ene ii) Antimarkovnikovs addn,1-bromobutane	$1 / 2 \times 5=2.5$ $1 / 2 \times 3=1.5$ 1 3x1 2x1
27.	a) $\mathrm{P} 4+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$ b) $\mathrm{PH}_{4} \mathrm{I}+\mathrm{KOH} \rightarrow \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}+\mathrm{PH}_{3}$ c) The solution of PH_{3} in water decomposes in presence of light giving red phosphorus and H_{2}, $3 \mathrm{CuSO}_{4}+2 \mathrm{PH}_{3} \rightarrow \mathrm{Cu}_{3} \mathrm{P}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4}$ d) $\mathrm{PH}_{3}+\mathrm{HBr} \rightarrow \mathrm{PH}_{4} \mathrm{Br}$ OR a) Absence of d orbitals b) Presence of lone pair of electrons c) $\mathrm{PH}_{4}{ }^{+}$is tetrahedral and PH_{3} is pyramidal d) Due to high BDE e) Due to Inert pair effect	1x5 1x5

